Refined Spatial Network for Human Action Recognition
نویسندگان
چکیده
منابع مشابه
Dynamic Probabilistic Network Based Human Action Recognition
This paper examines use of dynamic probabilistic networks (DPN) for human action recognition. The actions of lifting objects and walking in the room, sitting in the room and neutral standing pose were used for testing the classification. The research used the dynamic interrelation between various different regions of interest (ROI) on the human body (face, body, arms, legs) and the time series ...
متن کاملJoint Network based Attention for Action Recognition
By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-ofthe-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and temporal information between the two standalone streams and is hard to capture long-term temporal dependence of an action. More importantly, it is in...
متن کاملRefined Tests for Spatial Correlation
We consider testing the null hypothesis of no spatial correlation against the alternative of pure first order spatial autoregression. A test statistic based on the least squares estimate has good first-order asymptotic properties, but these may not be relevant in small or moderate-sized samples, especially as (depending on properties of the spatial weight matrix) the usual parametric rate of co...
متن کاملHuman Action Recognition Without Human
The objective of this paper is to evaluate “human action recognition without human”. Motion representation is frequently discussed in human action recognition. We have examined several sophisticated options, such as dense trajectories (DT) and the two-stream convolutional neural network (CNN). However, some features from the background could be too strong, as shown in some recent studies on hum...
متن کاملHuman Action Recognition System
uman action recognition has evoked considerable interest in the various research areas and applications due to its potential use in proactive computing. The objective of this work is to recognize various human actions like run, jump, walk etc. Moving Object detection and tracking is the first step for action recognition. The algorithm first makes use of the statistical background model and back...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2933303